Distributed and Peer-to-Peer Data Mining for Scalable Analysis of Data from Virtual Observatories

Hillol Kargupta, University of Maryland, Baltimore County Kirk Borne, George Mason University Chris Giannella, Loyolla College

Road Map

- Motivation
- Distributed Data Mining
- Current Research
- Preliminary Results
- Future Directions

Data Mining and Distributed Data Mining

- Data Mining: Scalable analysis of data by paying careful attention to the resources:
 - computing,
 - communication,
 - storage, and
 - human-computer interaction.
- Distributed data mining (DDM): Mining data using distributed resources.

Future of Astronomy Data Processing Environment

- Multiple data sources
- Heterogeneous distributed computing environment
- Increasing number of users; scientific communities forming peer-to-peer networks
- Increasing demand for faster response time
- High throughput data streams

Multiple Data Sources

Why Multiple Sources?

And because ...

 Astrophysical correlations often relate object parameters that are measured in multiple wavebands, hence different surveys:

US National Virtual Observatory

Astronomy Data Streams

Future sky-surveys are expected to produce large quantities of new observational data nightly.

- e.g., LSST is expected to produce
- ≈ 30 TB of data per night for 10 years
- ≈ 20 PB final astronomical object catalog

Alert Processing

- Potentially 10⁵ alerts per night. An alert is any observed change (e.g., object brightness, object location, new object appearance, etc.) in the night sky.
- Rapid, appropriate followup observations are essential for short-lived phenomenon to determine what it is, what caused the sudden variation in its properties, and how does it relate to other objects.

Alert Classification

- Classify alerts (events) to facilitate appropriate, rapid response.
 - time-criticality, trigger appropriate follow-up observation resources, etc..
- Produce tagged alerts for the astronomy community
 - tags will include classifications
 - classifications will require distributed data mining across the NVO (i.e., feature set drawn from multiple astrophysical data repositories)
 - viewable in near real-time over the WWW

Distributed and Peer-to-Peer Computing Environment

Overall Project Goal

 Develop scalable data mining techniques for quickly sifting through distributed data streams

 Then download data if necessary for more in-depth analysis based on the feedback from Step 1.

Project Methodology

- Identify a set of important astronomy data mining tasks
- Develop distributed and P2P stream mining algorithms for these tasks
 - Principal component analysis
 - Outlier detection
 - Classification

Mining Multiple Surveys Across the NVO – Steps 1 and 2

 1. Identify the research domain and the research problem: explore large astronomical data sets for new classes of objects through discovery and analysis of correlations

- 2. Download, cross-match, and preprocess data from multiple distributed astronomical repositories (NVO)
 - e.g., SDSS, 2MASS

Mining Multiple Surveys Across the NVO – Step 3

- 3. Apply data mining to address questions more readily than could be done using individual catalogs
 - e.g., Are there systematic variations in known astrophysical correlations (e.g., the fundamental plane of elliptical galaxy properties, or the Tully-Fisher relation of spiral galaxies) as a function of local galaxy density?

Mining Multiple Surveys Across the NVO – Step 3

 3. i.e., Does the normal vector of the principal plane (or the variance captured in the principal components) of complex multi-parameter relationships vary systematically with local galaxy density?

The Fundamental Plane of Elliptical Galaxies

- The fundamental plane for elliptical galaxies tracks the correlation between the effective radius, average surface brightness, and central velocity dispersion.
- With this correlation, one can determine the distance to galaxies, which is a critical but difficult task in astronomy.

Preliminary Experiment

- Produced a 156,000 cross-matched galaxy dataset with attributes from SDSS and 2MASS
 - SDSS: velocity dispersion, Pertrosian I band angular effective radius, redshift
 - 2MASS: K band mean surface brightness
- Partitioned into bins w.r.t. local galaxy density ρ
 - Estimated ρ using Delaunay tessellation methods
 - The local density around a selected galaxy is inversely proportional to the local volume that contains only that one galaxy – measured by the Delaunay tessellation
- Estimated the fundamental plane parameters for each bin (e.g., variance captured in the first two principal components, as $f(\rho)$)

Results

Potential Significance

- This systematic trend shows that the strength of the correlation (fundamental plane) grows as the local galaxy density increases.
- This indicates that the dynamical properties (hence formation scenarios) of elliptical galaxies become increasingly uniform in the densest environments.

Distributed and P2P Algorithm Design

- Distributed and P2P PCA
- Can be reduced to distributed inner product computation
- Asynchronous local algorithms for distributed inner product computation
 - Exact
 - Approximate

Fundamental Plane Problem: Further Refinement

- Further homogenization of the cross-matched galaxy sample
 - e.g., to filter out bulgedominated spirals = nonellipticals
 - will help to isolate the trends found here
 - i.e., to determine if the trends that we found are a new discovery, or are they a manifestation of the well known morphology-density relationship of galaxies?

Future Work

 Expand the scope of the scientific research; identify other scientific tasks.

Develop distributed algorithms

Recent Awards and Sample Publications

- K. Bhaduri and H. Kargupta. (2008). An efficient local Algorithm for Distributed Multivariate Regression in Peerto-Peer Networks. 2008 SIAM Data Mining Conference Paper selected for "Best of SDM'08" issue (one of the top six papers in SDM'08)
- H. Dutta, C. Giannella, K. Borne and H. Kargupta. (2007). Distributed Top-K Outlier Detection from Astronomy Catalogs using the DEMAC System. Proceedings of the SIAM International Conference on Data Mining, Minneapolis, USA, April 2007.